International Animal Health Products Pty Ltd Chemwatch: 4856-22 Version No: 6.1 Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements #### Chemwatch Hazard Alert Code: 2 Issue Date: **01/11/2019**Print Date: **27/10/2021**S.GHS.AUS.EN #### SECTION 1 Identification of the substance / mixture and of the company / undertaking #### **Product Identifier** | Product name | Tyleco Soluble | |-------------------------------|----------------| | Chemical Name | Not Applicable | | Synonyms | Not Available | | Chemical formula | Not Applicable | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses As an aid in the control and treatment of Chronic Respiratory Disease (CRD) in broilers and replacement chickens, and infectious sinusitis in turkeys caused by Mycoplasma gallisepticum. As an aid in the prevention and treatment of swine dysentery in pigs. Add to drinking water as per label directions for specific animal. Do not use in laying hens or replacement pullets/broiler breeders within 7 days of onset of lay where eggs or egg products are to be used for human consumption or processing. Prescription animal remedy. #### Details of the supplier of the safety data sheet | Registered company name | International Animal Health Products Pty Ltd | | |-------------------------|--|--| | Address | 18 Healey Circuit Huntingwood NSW 2148 Australia | | | Telephone | +61 2 9672 7944 | | | Fax | +61 2 9672 7988 | | | Website | www.iahp.com.au | | | Email | info@iahp.com.au | | #### **Emergency telephone number** | Association / Organisation | Australian Poison Information Centre | | |-----------------------------------|--|--| | Emergency telephone numbers | 13 11 26 (24 Hours) | | | Other emergency telephone numbers | New Zealand: National Poisons Centre 0800 764 766 (24 hours) | | #### **SECTION 2 Hazards identification** #### Classification of the substance or mixture HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. Poisons Schedule S4 Chemwatch: **4856-22** Version No: **6.1** Page 2 of 13 Tyleco Soluble Issue Date: **01/11/2019**Print Date: **27/10/2021** Classification [1] Sensitisation (Skin) Category 1 Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI #### Label elements #### Hazard pictogram(s) Signal word Warning #### Hazard statement(s) H317 May cause an allergic skin reaction. #### Supplementary statement(s) Not Applicable #### Precautionary statement(s) Prevention | P280 | Wear protective gloves and protective clothing. | | |------|--|--| | P261 | Avoid breathing dust/fumes. | | | P272 | Contaminated work clothing should not be allowed out of the workplace. | | #### Precautionary statement(s) Response | P302+P352 | IF ON SKIN: Wash with plenty of water. | | |-----------|--|--| | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | # Precautionary statement(s) Storage Not Applicable ## Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. ## **SECTION 3 Composition / information on ingredients** # Substances See section below for composition of Mixtures # Mixtures | CAS No | %[weight] | Name | |---|--|------| | 74610-55-2 | 80 <u>tylosin tartrate</u> | | | Not Available | balance Ingredients determined not to be hazardous | | | Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | | #### **SECTION 4 First aid measures** #### Description of first aid measures If this product comes in contact with the eyes: Eye Contact - ► Wash out immediately with fresh running water. - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - Seek medical attention without delay; if pain persists or recurs seek medical attention. - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. Chemwatch: 4856-22 Page 3 of 13 Issue Date: 01/11/2019 Version No: 6.1 Tyleco Soluble Print Date: 27/10/2021 | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | |--------------|---| | Inhalation | If dust is inhaled, remove from contaminated area. Encourage patient to blow nose to ensure clear passage of breathing. If irritation or discomfort persists seek medical attention. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. | #### Indication of any immediate medical attention and special treatment needed Treat symptomatically. #### **SECTION 5 Firefighting measures** #### **Extinguishing media** - ► Water spray or fog. - Foam. - Dry chemical powder. - BCF (where regulations permit). - Carbon dioxide. #### Special hazards arising from the substrate or mixture Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### Advice for firefighters # Fire Fighting Fire/Explosion Hazard - Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves. - ▶ Prevent, by any means available, spillage from entering drains or water courses. - Use water delivered as a fine spray to control fire and cool adjacent area. - DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use. # Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible (circa 70%) - according to the circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions. Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in - air or some other oxidations medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions). - Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited particles exceeding this limit will generally not form flammable dust clouds; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an explosion. # In the same way as gases and vapours, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL) are applicable to dust clouds but only the LEL is of practical use; - this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC). - When processed with flammable liquids/vapors/mists, ignitable (hybrid) mixtures may be formed with combustible dusts. Ignitable mixtures will increase the rate of explosion pressure rise and the Minimum Ignition Energy (the minimum amount of energy required to ignite dust clouds MIE) will be lower than the pure dust in air mixture. The Lower Explosive Limit (LEL) of the vapour/dust mixture will be lower than the individual LELs for the vapors/mists or dusts. - A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people. - Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of
sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this type. - P Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport. Issue Date: 01/11/2019 Chemwatch: 4856-22 Page 4 of 13 Version No: 6.1 Print Date: 27/10/2021 Tyleco Soluble - ▶ Build-up of electrostatic charge may be prevented by bonding and grounding. - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. - All movable parts coming in contact with this material should have a speed of less than 1-meter/sec. - A sudden release of statically charged materials from storage or process equipment, particularly at elevated temperatures and/ or pressure, may result in ignition especially in the absence of an apparent ignition source. - One important effect of the particulate nature of powders is that the surface area and surface structure (and often moisture content) can vary widely from sample to sample, depending of how the powder was manufactured and handled; this means that it is virtually impossible to use flammability data published in the literature for dusts (in contrast to that published for gases and vapours). - Autoignition temperatures are often quoted for dust clouds (minimum ignition temperature (MIT)) and dust layers (layer ignition temperature (LIT)); LIT generally falls as the thickness of the layer increases. Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) nitrogen oxides (NOx) other pyrolysis products typical of burning organic material. May emit poisonous fumes. May emit corrosive fumes. **HAZCHEM** Not Applicable #### **SECTION 6 Accidental release measures** #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up - Clean up waste regularly and abnormal spills immediately. - Avoid breathing dust and contact with skin and eyes. - ▶ Wear protective clothing, gloves, safety glasses and dust respirator. - Use dry clean up procedures and avoid generating dust. - Minor Spills **Major Spills** - Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use). - Dampen with water to prevent dusting before sweeping. - Place in suitable containers for disposal. #### Moderate hazard. - ► CAUTION: Advise personnel in area. - ▶ Alert Emergency Services and tell them location and nature of hazard. - Control personal contact by wearing protective clothing. - ▶ Prevent, by any means available, spillage from entering drains or water courses. - Recover product wherever possible. - F IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal. - ALWAYS: Wash area down with large amounts of water and prevent runoff into drains. - If contamination of drains or waterways occurs, advise Emergency Services. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 Handling and storage** Safe handling # Precautions for safe handling - ▶ Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. # ▶ DO NOT allow material to contact humans, exposed food or food utensils. - Avoid contact with incompatible materials. - ▶ When handling, **DO NOT** eat, drink or smoke. - ▶ Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. #### Continued... Issue Date: **01/11/2019**Print Date: **27/10/2021** - ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. - Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions) - Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame. - Establish good housekeeping practices. - ▶ Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds. - Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area. - Do not use air hoses for cleaning. - Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used. - Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition. - Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance. - ▶ Do not empty directly into flammable solvents or in the presence of flammable vapors. - The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source. - Do NOT cut, drill, grind or weld such containers. - In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit. #### Store in original containers. - ► Keep containers securely sealed. - Store in a cool, dry area protected from environmental extremes. - Store away from incompatible materials and foodstuff containers. - ▶ Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. #### - Consider storage in bunded areas ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams). - Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities. ## Conditions for safe storage, including any incompatibilities 100 g water soluble bag. 1 kg and 10 kg plastic containers. Check that containers are clearly labelled and free from leaks Packaging as recommended by manufacturer. Suitable container Multi-ply paper bag with sealed plastic liner or heavy gauge plastic bag. **NOTE:** Bags should be stacked, blocked, interlocked, and limited in height so that they are stable and secure against sliding or collapse. Check that all containers are clearly labelled and free from leaks. Packing as recommended by manufacturer. Avoid reaction with oxidising agents #### **SECTION 8 Exposure controls / personal protection** #### **Control parameters** Occupational Exposure Limits (OEL) INGREDIENT DATA Not Available #### Emergency Limits | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |----------------|---------------|---------------|---------------| | Tyleco Soluble | Not Available | Not Available | Not Available | | | | | | | Ingredient | Original IDLH | Revised IDLH | |------------------|---------------|---------------| | tylosin tartrate | Not Available | Not Available | Issue Date: **01/11/2019**Print Date: **27/10/2021** #### **Occupational Exposure Banding** | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | |------------------|--|----------------------------------| | tylosin tartrate | D | > 0.01 to ≤ 0.1 mg/m³ | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | #### **Exposure controls** Enclosed local exhaust ventilation is required at points of dust, fume or vapour generation. HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapours. Barrier protection or laminar flow cabinets should be considered for laboratory scale handling. A fume hood or vented balance enclosure is recommended for weighing/
transferring quantities exceeding 500 mg. When handling quantities up to 500 gram in either a standard laboratory with general dilution ventilation (e.g. 6-12 air changes per hour) is preferred. Quantities up to 1 kilogram may require a designated laboratory using fume hood, biological safety cabinet, or approved vented enclosures. Quantities exceeding 1 kilogram should be handled in a designated laboratory or containment laboratory using appropriate barrier/ containment technology. Manufacturing and pilot plant operations require barrier/ containment and direct coupling technologies. Barrier/ containment technology and direct coupling (totally enclosed processes that create a barrier between the equipment and the room) typically use double or split butterfly valves and hybrid unidirectional airflow/ local exhaust ventilation solutions (e.g. powder containment booths). Glove bags, isolator glove box systems are optional. HEPA filtration of exhaust from dry product handling areas is required. Fume-hoods and other open-face containment devices are acceptable when face velocities of at least 1 m/s (200 feet/minute) are achieved. Partitions, barriers, and other partial containment technologies are required to prevent migration of the material to uncontrolled areas. For non-routine emergencies maximum local and general exhaust are necessary. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|---------------------------------| | solvent, vapours, etc. evaporating from tank (in still air) | 0.25-0.5 m/s
(50-100 f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | | direct spray, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | | |--|----------------------------------|--| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | | 3: Intermittent, low production. | 3: High production, heavy use | | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated: Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated. The following protective devices are recommended where exposures exceed the recommended exposure control guidelines by factors of: 10; high efficiency particulate (HEPA) filters or cartridges 10-25; loose-fitting (Tyvek or helmet type) HEPA powered-air purifying respirator. Chemwatch: 4856-22 Version No: 6.1 Page **7** of **13** Tyleco Soluble Issue Date: **01/11/2019**Print Date: **27/10/2021** 25-50; a full face-piece negative pressure respirator with HEPA filters 50-100; tight-fitting, full face-piece HEPA PAPR 100-1000; a hood-shroud HEPA PAPR or full face-piece supplied air respirator operated in pressure demand or other positive pressure mode. #### Personal protection When handling very small quantities of the material eye protection may not be required. For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs: - Chemical goggles. - ▶ Face shield. Full face shield may be required for supplementary but never for primary protection of eyes. #### Eye and face protection Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection See Hand protection below #### NOTE: - The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Hands/feet protection Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - Excellent when breakthrough time > 480 min - · Good when breakthrough time > 20 min - Fair when breakthrough time < 20 min - Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. - Rubber gloves (nitrile or low-protein, powder-free latex, latex/ nitrile). Employees allergic to latex gloves should use nitrile gloves in preference. - Double gloving should be considered. - ▶ PVC gloves. Issue Date: **01/11/2019**Print Date: **27/10/2021** ▶ Change gloves frequently and when contaminated, punctured or torn. Wash hands immediately after removing gloves. ▶ Protective shoe covers. [AS/NZS 2210] Head covering. Experience indicates that the following polymers are suitable as glove materials for protection against
undissolved, dry solids, where abrasive particles are not present. polychloroprene. ▶ nitrile rubber. butyl rubber. If fluorocaoutchouc. ▶ polyvinyl chloride. Gloves should be examined for wear and/ or degradation constantly. **Body protection** See Other protection below For quantities up to 500 grams a laboratory coat may be suitable. For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs. For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers. Other protection For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection. ▶ Eye wash unit. ▶ Ensure there is ready access to an emergency shower. #### Respiratory protection Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:001, ANSI Z88 or national equivalent) ▶ For Emergencies: Vinyl suit | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|------------------------| | up to 10 x ES | P1
Air-line* | - | PAPR-P1 | | up to 50 x ES | Air-line** | P2 | PAPR-P2 | | up to 100 x ES | - | P3 | - | | | | Air-line* | - | | 100+ x ES | - | Air-line** | PAPR-P3 | * - Negative pressure demand ** - Continuous flow A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - · Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - · Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended. - · Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - · Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU) - Use approved positive flow mask if significant quantities of dust becomes airborne. - Try to avoid creating dust conditions. #### **SECTION 9 Physical and chemical properties** | Information on basic physical and chemical properties | | | | |---|---|---|---------------| | Appearance | White to slightly yellow granular powder with a characteristic odour; mixes with water. Soluble in absolute alcohol. Bulk density: 0.96-1.04 g/mL | | | | | | | | | Physical state | Divided Solid | Relative density (Water = 1) | Not Available | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | Chemwatch: **4856-22**Version No: **6.1** Tyleco Soluble Issue Date: 01/11/2019 Print Date: 27/10/2021 | pH (as supplied) | Not Available | Decomposition temperature | Not Available | |--|----------------|----------------------------------|----------------| | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Applicable | | Initial boiling point and boiling range (°C) | Not Applicable | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Applicable | Explosive properties | Not Available | | Flammability | Not Available | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Applicable | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Miscible | pH as a solution (%) | 5.0-7.5 (2.5%) | | Vapour density (Air = 1) | Not Applicable | VOC g/L | Not Available | # **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 Toxicological information** # Information on toxicological effects | mormation on toxicologi | | |-------------------------|--| | Inhaled | The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. | | Ingestion | Accidental ingestion of the material may be damaging to the health of the individual. Macrolides are antibiotics derived from bacteria. They most commonly cause gastrointestinal discomfort but rarely cause suprainfection, allergic sensitisation, watery eyes, shortness of breath, nasal congestion, choking, coughing and wheezing. Member families can be toxic at high concentrations. Erythromycin may cause reversible chemical damage to hearing and balance (ottoxicity); the avermectin group may cause fever, rash, and lymph-node pain and swelling; ivermectin has caused incoordination, weakness, slowed breathing, vomiting, dilated pupils, sedation, tremors, paralysis and even death in animals; Oleandomycin damages the liver and causes jaundice while Tilmicosin is reported to cause alterations to heart rhythm and rate and degeneration of heart muscle. There may be cross-resistance encountered between the macrolide, lincosamide and streptogramin groups of antibiotics. Salts of tartaric acid (including Rochelle salt and Seidlitz powder) and the acid itself have all produced serious poisonings or fatalities in man. Gastrointestinal symptoms are marked and include violent vomiting, diarrhoea, abdominal pain and thirst followed by cardiovascular collapse and/or kidney failure. | | Skin Contact | The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | Eye | Although the material is not thought to be an irritant (as classified by EC
Directives), direct contact with the eye may cause transient discomfort characterised by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. | Version No: 6.1 #### Tyleco Soluble Issue Date: **01/11/2019**Print Date: **27/10/2021** Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. There is some evidence that inhaling this product is more likely to cause a sensitisation reaction in some persons compared to the general population. #### Chronic Prolonged or repeated use of antibiotics, at therapeutic doses, may produce bacterial resistance for some types of bacteria. Prolonged use may result in the overgrowth of non-susceptible organisms (i.e. Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis, caused by particles less than 0.5 micron penetrating and remaining in the lung. Exposure to small quantities may induce hypersensitivity reactions characterised by acute bronchospasm, hives (urticaria), deep dermal wheals (angioneurotic oedema), running nose (rhinitis) and blurred vision. Anaphylactic shock and skin rash (non-thrombocytopenic purpura) may occur. Respiratory sensitisation may result in allergic/asthma like responses; from coughing and minor breathing difficulties to bronchitis with wheezing, gasping. | Tidose Colidado | TOXICITY | IRRITATION | | |------------------|---|----------------------------|--| | Tyleco Soluble | Not Available | Not Available | | | | TOXICITY | IRRITATION | | | tylosin tartrate | Oral(Guinea) LD50; >1000 mg/kg ^[2] | Eye (rabbit): irritating * | | | | Skin (rabbit): non-irritating * | | | | Legend: | Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | #### TYLOSIN TARTRATE The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. **NOTE:** Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA. Somnolence, convulsions, irritability recorded. * Elanco | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | × | Reproductivity | × | | Serious Eye
Damage/Irritation | × | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | ~ | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | **Legend: X** − Data either not available or does not fill the criteria for classification ✓ – Data available to make classification # **SECTION 12 Ecological information** #### **Toxicity** | | Endpoint | Test Duration (hr) | Species | | Value | Source | |------------------|------------------|--------------------|-------------------------------|------|------------------|------------------| | Tyleco Soluble | Not
Available | Not Available | Not Available | | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Val | ue | Source | | tylosin tartrate | EC50(ECx) | 24h | Algae or other aquatic plants | 0.00 | 08-0.01mg/l | 4 | | | EC50 | 72h | Algae or other aquatic plants | 0.38 | 37-0.437mg/l | 4 | | | EC50 | 48h | Crustacea | 568 | -759mg/l | 4 | Issue Date: **01/11/2019**Print Date: **27/10/2021** #### Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | | |------------|---------------------------------------|---------------------------------------|--| | | No Data available for all ingredients | No Data available for all ingredients | | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |------------|---------------------------------------| | | No Data available for all ingredients | #### Mobility in soil | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | #### **SECTION 13 Disposal considerations** #### Waste treatment methods - Containers may still present a chemical hazard/ danger when empty. - Return to supplier for reuse/ recycling if possible. #### Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - ► Reuse - Recycling - Product / Packaging Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - ▶ It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material) - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. #### **SECTION 14 Transport information** disposal #### Labels Required | • | | |------------------|----------------| | Marine Pollutant | NO | | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Issue Date: **01/11/2019**Print Date: **27/10/2021** #### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |------------------|---------------| | tylosin tartrate | Not Available | #### Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |------------------|---------------| | tylosin tartrate | Not Available | #### **SECTION 15 Regulatory information** #### Safety, health and environmental regulations / legislation specific for the substance or mixture #### tylosin tartrate is found on the following regulatory lists Australia Chemicals with non-industrial uses removed from the Australian Inventory of Chemical Substances (old Inventory) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4 Australia Industrial Chemicals Introduction Scheme Comparable Chemicals Table ## **National Inventory Status** | National Inventory | Status | |--|---| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | Canada - DSL | No (tylosin tartrate) | | Canada - NDSL | No (tylosin tartrate) | | China - IECSC | No (tylosin tartrate) | | Europe - EINEC / ELINCS /
NLP | Yes | | Japan - ENCS | Yes | | Korea - KECI | No (tylosin
tartrate) | | New Zealand - NZIoC | Yes | | Philippines - PICCS | No (tylosin tartrate) | | USA - TSCA | No (tylosin tartrate) | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | No (tylosin tartrate) | | Russia - FBEPH | No (tylosin tartrate) | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | # **SECTION 16 Other information** | Revision Date | 01/11/2019 | |---------------|------------| | Initial Date | 14/03/2013 | # Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** Chemwatch: 4856-22 Page 13 of 13 Version No: 6.1 Tyleco Soluble PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value **BCF**: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals **DSL: Domestic Substances List** NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory **KECI: Korea Existing Chemicals Inventory** NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances Issue Date: 01/11/2019 Print Date: 27/10/2021